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We discuss a model for transport properties in a donor-acceptor system connected by a dimerized chain.
The system is assumed to be subject to site-diagonal disorder. The average spectral properties of the system
are discussed by using the random matrix Wegner model (Anderson’s type tight-binding Hamiltonian (TBH))
for the electronic part of the problem. In our analysis we use the “Blue’s function” (functional inverse of the
resolvent) formalism. For a simple one-dimensional tight-binding picture, we show that the diagonal disorder
destroys the energy gap emerging as a Peierls effect in a nonperturbed system without disorder, rederiving
thus the results obtained earlier using different models of site randomness.

I. Introduction

Despite their simplicity, one-dimensional systems play a
crucial role in the understanding of the properties of solids, since
many features of the properties of the electronic states and of
the related transport properties can be discussed rigorously (see
refs 1 and 2 and references therein). Current developments in
molecular electronics3 have brought the attention to the one-
dimensional electronic systems as models of molecular wires.2,3

A molecular wire is a quasi-one-dimensional molecule or
ensemble of molecules that can transport charge carries between
its ends. That means that a molecular wire has to be conjugated
along its entire length, thus providing a series of overlappingπ
orbitals through which the electron delocalization is effective.
It should have also a small bandgap so that the energy difference
between the localized electrons and delocalized ones is small
enough to make the “conduction band” easily accessible.

Quasi-one-dimensional metals and molecular wires distort
spontaneously4,5 according to the Peierls instability: the spacing
between successive atoms along the chain is modulated with
period 2π/(2kF), where kF is the Fermi wave number. The
tendency toward spontaneous symmetry-breaking is particularly
strong in systems with a half-filledπ conductance band. The
distortion leads to a pairing of successive sites along the chain,
or “dimerization”. The process opens an energy gap at the
Fermi surface, thus lowering the energy of occupied states and
stabilizing the distortion.

In the competition between the lowering of the electronic
energy and the increase of the elastic energy of the polymer,
the modulation of the bond length takes place. Dimerized chains
can be thus described by a tight-binding Hamiltonian with
alternating off-diagonal terms

with âij being a symmetric site diagonal matrix

representing alternating variation between the sites. Such a
Hamiltonian is relevant for polyenes and cofacially stacked
polymers. For a typical example of a conjugated system of
polyacetylene,6 the dimerized structure of the chain is character-
ized by theπ band width 4â ) 10 eV and the dimerization
energy 2∆ ) 4t1 ≈ 1.4 eV. Within the one-electron approxima-
tion, neglecting the effect of phonons, the above tight-binding
Hamiltonian can represent also a molecular wire.7,8 The Hückel-
like models have been used in series of papers devoted to the
study of the electronic response of molecular wires.3,8 In the
latter, the authors have raised the role of disorder in tight-binding
wires; that is, they have studied the effect of random site
energies (Hu¨ckel R parameter). Such a static diagonal disorder
refers to situations when the position and nature of the groups
in the wire are only known statistically. In fact, in theπ-electron
picture of the Hu¨ckel Hamiltonian, changing the side groups
affects the energy of the site it has been attached to. For that
reason, quasi-one-dimensional bridges with disorder can be
models9 of biological medium (proteins) involved in carrying
the electron from donor to acceptor.

The electron density of states and localization length have
been previously calculated for weakly disordered dimerized
tight-binding chains (cf. refs 10-14) using various methods.
In particular, it has been shown10 that a stochastic Gaussian
site disorder destroys the energy gap in the center of the band.

In what follows, we report on the effect of diagonal disorder
on the localization properties of a dimerized chain that ac-
companies the charge transfer. Our method, based on the “free
variables approach”, is consistent with the CPA treatment,15-17

as it will be briefly discussed in the next section. In section II,
we review the formalism of the functional inverse of Green’s
function, which is used in our approach to evaluate spectral
properties of the system. In sections III-V an application of
Blue’s function is presented; we analyze and discuss statistical
properties of the TBH model with disorder, showing the effect
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Hbridge) ∑
i

N

εi|âi〉〈âi| + ∑
i*j

âij|bi〉〈âj| (1)

â2i,2i-1 ) â - t1 “single” bond
(2)

â2i,2i+1 ) â + t1 “double” bond
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of noise on the Peierls gap in a dimerized chain. In conclusion,
we speculate on further applications of the formalism.

II. Disordered Chain and Random Matrix Models

Complex and disordered systems play an important role in a
number of areas in physics, chemistry, and biology. The dual
interplay between disorder and localization18 and disorder and
chaos19,20 has far-reaching consequences on many aspects of
modern science21-25 at the macroscopic and microscopic levels.
A neat tool used in investigating Hamiltonians of disordered
systems is the random matrix theory (RMT),21,22where numer-
ous calculational methods have been developed such as or-
thogonal polynomials, replica methods, and others. A powerful
alternative to some of these methods has been the work of
Voiculescu and Speicher26,27using the concept of “free random
variables”. “Free disorder” allows for exact calculations of
various moments of Hamiltonians composed of random and
deterministic parts. In physical systems, freeness accounts for
summing over all “single-site” rescatterings, similar to the mean-
field approach in many-body theory. Instead of using the
standard language of Green’s functions, one can choose to use
their functional inverse introduced and named “Blue’s functions”
by Zee.28 In many ways, the Blue’s function approach is a user-
friendly method providing a calculational shortcut to a more
advanced approach presented in Voiculescu papers. In the
former two papers,29,30 we have used the formalism of Blue’s
function in the calculation of spectral properties of disordered
systems. The machinery is based on the concept of additivity
of Blue’s functions for both Hermitian random ensembles28 and
non-Hermitian random ensembles15,31with arbitrary measures.

The formalism can be translated to describe spectral properties
of a Hamiltonian of the form

where HD is a deterministic andHR a random part of the
operator. By assuming thatHD andHR are free with respect to
the average over the disorder, the diagonal part of the one-
particle Green function associated with the total Hamiltonian
H satisfies the equation15,17,27,28,32

where the argument ofGD is z - Σ with Σ being nothing but
the self energy determined by

and

The same result has been rederived by Zee28 who, through
his diagrammatic analysis, introduced the “Blue’s function” that
is just the functional inverse of the resolvent

and satisfies the additivity law

Both eqs 4 and 8 coincide if one identifiesB(z) ) Σ(z) + z-1.
When the averaging in eq 6 is done over the ensemble ofN ×

N random Hermitian matrices generated with the Gaussian
probability

standard calculations21 give

which together with the eq 7 lead to Blue’s function

The property in eq 8 bears much in common with the CPA
treatment16,17 of the Hamiltonian eq 3 for which theHR part is
the diagonal random matrix with random entriesV. The CPA
method requires4

with Green’s function fulfilling the condition of eq 4. By
multiplying by G(z) and adding and substracting 1 in the
numerator, the above formula reads6

By taking the functional inverse (Blue’s function) of the random
part ofG(z) in eq 13 and the deterministic part ofG(z) in eq 4
one obtains

After the substitutionz ) B(G(z)), the sum ofBR andBD can

be reexpressed in terms of eq 8, bringing the argument about
the CPA character16,17 of the method.

III. Spectral Density and Conductance

A molecular wire can be understood as a connecting unit that
is able to transfer electrons between two components.2,3

Important applications of molecular wires range from molecular
electronics7,33 to bridge-mediated electron transfer8,9,30,34-36 in
biological systems, where the transfer of electron proceeds from
donor to acceptor through a bridge connecting them. The ability
to transfer charges between terminal points of the wire is
measured in terms of conductance, which at low temperature
(and in the dc limit,ω f 0) can be expressed in terms of the
spectral function via the Kubo-Greenwood relation4,37

whereEF stands for the Fermi energy,e is a unit charge,VB

represents the volume of the first Brillouin zone, andν(ε) is
the density of electronic states in the wire. By changing to a
complex variable, the density of eigenvalues can be conveniently

P(H) ) 1
Z

e-NtrH2/(2σ2) (9)

GR(z) ) 1

2σ2
(z - xz2 - 4σ2) (10)

BR(z) ) σ2 z + 1
z

(11)

〈 V - Σ
1 - (V - Σ)G〉 ) 0 (12)

G(z) ) 〈 1

G-1 + Σ - V〉 ) GR(G-1 + Σ) (13)

BR(G) ) 1
G

+ Σ

BD(G) ) z - Σ (14)

gT)0(ω) ) const
2e2

πVB
ν2(ε)EF) (15)

H ) HD + HR (3)

G(ε) ) GD[z - Σ(G(z))] (4)

GR ) 1

z - Σ(GR)
(5)

GR ) 1
N

tr〈 1

z - HR〉 (6)

B[G(z)] ) z (7)

BD+R(z) ) BD(z) + BR(z) -
1
z

(8)
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defined in terms of the trace of the resolvent of the wire (bridge)
Hamiltonian

The density of states forHbridge is then given by

in the limit of λ f 0 and follows from the discontinuities of
the resolvent (eq 16) along theε-axis. In the Peierls theory the
one-domensional bridge Hamiltonian is of the form

with alternating coupling strengths andt1 ) ∆/2. The deter-
ministic resolvent of such a modelN × N Hamiltonian, in the
limit of large N, is6

Blue’s function, the function inverse of the resolvent, may be
found easily,

As it stands, the bridge TBH Hamiltonian, eq 18, can be
generalized, as in the case of the Anderson model, to include
disorder of the bridge chain. In what follows, we will adopt
the model of the site diagonal disorder that is equivalent to the
ones studied by Wegner37 and Neu and Speicher.17,27 The idea
of Wegner was to generalize the Anderson model by puttingn
electronic states at each site of thed-dimensional lattice and
describing the disorder by Gaussian random matrices in the
electronic states. Forn ) 1 Wegner’s model reduces to the
usual unsolvable Anderson model and becomes exactly solvable
for n f ∞. Adding a Gaussian noise to the (deterministic)
bridge, with Blue’s functionBR(ε) ) σ2ε + 1/ε yields Blue’s
function of the deterministic plus random system given by eq
8. By inverting the resulting expression, one finds a sixth-order
equation to the resolvent of the full system,

At ε ) 0 this can be reduced to a second-order equation

For small noise,σ, the resolvent is real, reaching zero atσc
2 )

2â∆, and forσ > σc the resolvent is imaginary, indicating a
nonvanishing spectral density. Thus, for a critical value of the
noise intensityσc we observe the disappearance of the energy
gap induced by the Peierls instability; 2∆ shrinks to zero.
Indeed, this is shown in Figure 1 for a specific choice ofâ and

∆ parameters.
The “deterministic” spectrum is divergent close to the

endpoints of the bands (-2â, -∆) and (∆, 2â), reproducing
the results of former analysis.14,10 For an increasing value of
the noise intensityσ, the distributionν(ε) flattens and the Peierls
gap disappears. Eventually, the spectral density changes from
the four-modal function with two peaks located at the ends of
the positive (negative) support to the unimodal distribution with
a broad hump around the center of the support. Similar
conclusions have been drawn in ref 10 using, however, a
different method of calculating averages over the randomized
site energies.

The change from the four-modal to unimodal distribution of
eigenenergies is characterized by a vanishing second derivative
of the resolvent around the center of the band,ε ) 0. Expanding
eq 21 aroundε ) 0 up to the second order, the critical noise
strengthσ/ is given by the third-order equation (â ) 1)

The general solution may be expressed analytically, however
lengthy. For a small gap (∆ < 0.1), we find

with σ/
4 ) 12 for the gapless case. For the demonstrated choice

∆ ) 0.5 we foundσ/ ) 2.38, and in the limiting case∆ f 2,
σ/ f 4 (see Figure 2). From the above considerations, we can
deduce that the dc conductivity at zero temperature, which is

G(ε) ) 1
N

tr 〈 1
ε - Hbridge

〉 (16)

ν(ε) ) 1
N

tr 〈δ(ε - Hbridge)〉 ) - 1
π

ImG(ε + iλ) (17)

Hb ) (0 â + t1
â + t1 0 â - t1

â - t1 0 â + t1
etc.

) (18)

GD (ε) ) (iε

x(ε2 - 4â2)(∆2 - ε
2)

(19)

(BD(ε))2 ) 1
2
[4â2 + ∆2 + 1/ε2 (

x(4â2 + ∆2 + 1/ε2)2 - 16â2∆2] (20)

(ε - σ2G)4 - (ε - σ2G)2(4â2 + ∆2 + 1

G2) + 4â2 ∆2 ) 0

(21)

G2(ε ) 0) )
4b2 + ∆2 - x(4â2 - ∆2)2 + 4σ4

2σ4
(22)

Figure 1. Spectral density of the Peierls bridge withâ ) 1, ∆ ) 0.5,
and varying noise strengthsσ for nonnegative energies. Note that by
eq 21, the spectral density in this case is symmetric in energiesε.

Figure 2. Critical strengthσ* in rescaled units (∆ f ∆/â, σ f σ/â).

4(σ/
4)3 - [3(∆2 - 4)2 + 256∆2] (σ/

4)2 -

192∆2 (∆2 - 4)2σ/
4 - 36∆2 (∆2 - 4)4 ) 0 (23)

σ/
4 ≈ 12 (1 + 23

2
∆2) (24)
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given by the square of the spectral function (cf. eq 15) depends
essentially on the strength of the noise. Above the critical value
of the noise intensity,σc

2 ) 2â∆, the conductivity becomes
nonvanishing everywhere inside the band.

IV. Localization Constant

Transport properties of the model system can be also
described in terms of the localization constant.1,4,5,38 For the
inverse localization lengthγ ≡ 1/l, the localization constant is
defined as

On the other hand,t(N,ε) ) |G1N(ε)|2; i.e., the square of the
matrix element ofG(ε) between the states that correspond to
the first and theNth sites of the connector gives the transmission
probability for a particle to be transferred from site 1 to siteN.

The matrix elementG1,N of the full (deterministic plus
random) system once again may be related to the same element
of the deterministic system16,27,30

with the self energy of the random interaction,Σ[G] ) σ2G.
The deterministic matrix element is easy to evaluate:

The determinant det(ε) ) detHb can be evaluated knowing the
resolvent (eq 19) by integration, since

whereZ ) 〈det(ε)〉 can be interpreted as a partition function

with F(ε) being a free energy analogue.16 Direct integration
yields

with the asymptotic det(ε) f εN for large ε. Dropping the
subleading (O(1/N)) terms, the “deterministic” localization
constant is

in the case of the bridge alone. For the full system (with noise
included) we make use of eq 26:

In the∆ f 0 limit these formulas reduce to the ones discussed
in the previous work.30

There is an interesting numerical observation: for small gaps
the most stable states are the ones aroundε ) 1 (in units ofâ)

with infinite localization length. However, even the smallest
noise yields a nonzero value ofγ at that point. After
disappearance of the Peierls gap, for noise intensities bigger
than (2â∆)1/2 the most stable states have energies around the
point ε ) 0.

V. Model of a Molecular Wire

So far, in our discussion we have omitted the effect of
terminal components (electrodes; donor and acceptor units) that
are connected by a molecular wire. A more general description
would require considering a system composed of two nonin-
teracting reservoirs of electronic states to which the molecular
chain is attached. The interaction between the electrodes and
the wire can be incorporated into the effective transfer matrix
element through Green’s function of the total “wire plus
reservoirs” Hamiltonian. Within the Newns-Anderson chemi-
sorption model,7,8 assuming half-filling, and for the transfer
between identical electrodes, the effect of reservoirs can be
lumped into the site energiesε1 ...,εN through the chemisorption
coupling. Formally, it leads to substitution7

whereΛ stands for the chemisorption coupling.

In the deterministic case and for a finite homogeneous bridge
of N units theG1,N element reads7,8

wheredN is a determinant of the tridiagonalN × N matrix, dN

) det(ε-Hb), andΣ1 ) ΣN are self energy corrections both set
up to iΛ. Note that in the largeN limit, this formula is
essentially the same as for the case of a pure molecular wire
with no electrodes attached. The only difference is a multipli-
cative factor (1+ iΛ)-2. Given the effective Hamiltonian, the
small voltage, low-temperature conductance of the wire is7

γ ) - lim
Nf∞

1
N

ln |G1,N| (25)

G1N(ε) ) G1N
D (ε - Σ[G(ε)]) (26)

G1N
D )

-(â + ∆/2)N/2-1 (â - ∆/2)N/2

detHb
N even

)
(â2 - ∆2/4)(N-1)/2

detHb
N odd (27)

G(ε) ) ∂εF(ε) (28)

F(ε) ) 1
N

log 〈det(ε)〉

det(ε) ) (xε
2 - ∆2 ( xε

2 - 4â2

2 )N

(29)

γD(ε) ) log
xε

2 - 4â2 + xε
2 - ∆2

x4â2 - ∆2
(30)

γ(ε) ) γD[ε - σ2G(ε)] (31)

Figure 3. Localization constant as the function of the energy withâ
) 1, ∆ ) 0.5, and varying noise strengthsσ.

ε1 f ε1 + iΛ1

εN f εN + iΛN (32)

G1,N )

(-1)N-1 ∏
i)1

N-1

âi,i+1

dN - 2dN-1Σ1 + dN-2Σ1ΣN

(33)

g ) 2e2

pπ
∆2|G1,N(0)|2 (34)
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and can be analyzed within the formalism of section IV. Again,
using eqs 4 and 26 or eq 8 would be equivalent to the coherent
potential approximation (CPA limit).16,17 The “free random
variables” approach is also relevant for non-Gaussian statistics.
That renders the Blue’s function formalism as a beneficial
method because of its appealing simplicity.

VI. Conclusions

The main objective of this contribution was to present an
efficient tool to study spectral properties of disordered systems.
The method has been previously introduced in a series of
papers15,28,31 and succesfully applied in various models of
dissipation29 and transport in disordered media.30 As mentioned
above, the transport properties of the system are influenced by
the localization properties of the electronic states. The model
studied in the paper refers to the situation when the bridge (or
a wire) is long enough to be considered infinite. We have
analyzed an array of elements with the alternating coupling
between the bridging orbitals along the chain. Owing to the
Peierls effect,5 a one-dimensional lattice with an equal overlap-
ping integral between the nearest-neighboring sites stabilizes
through a dimerization process that effectively leads to an
alternate bond length structure. A perfectly dimerized chain
can be described by a Hu¨ckel-type Hamiltonian (eq 1). In a
dimerized chain a gap band of width 2∆ is formed. In the paper,
site diagonal disorder is assumed to be in the form of a random
matrix model, resulting in placing at each site of the bridging
chain a random matrix with a semicircular distribution of
energies (Wegner model37). That would correspond to a
situation where the bridge energies aren-electron functions.

The site diagonal disorder imposed on the TBH Hamiltonian
can reduce, and eventually destroy, the Peierls gap, the effect
of which has been reported in literature previously (cf. ref 10
and references therein). The presence of noise extends and
flattens the spectrum of the TBH Hamiltonian, leading to a one-
interval energy support for values of noise intensity bigger than
the criticalσc ) (2â∆)1/2. If noise intensities exceed that value,
dc conductivity becomes finite everywhere inside the band. For
ε, the energy splitting between the Fermi level and the site
energies sampled from the center of the TBH band, the noise
increases the inverse localization lengthγ and leads to a fast
decay of the electronic coupling|G1,N(ε)|2 with the distance
measured in chain units. That would reduce the electronic part
of the kinetic rate for charge-transfer processes along the chain.

The random matrix techniques in the Blue’s function formal-
ism can be also applied to non-Hermitian Hamiltonians.15,16,31

This approximation is then identical16 with the conventional
CPA approximation used in the theory of disordered systems.4

The models of non-Hermitian Hamiltonians offer a new field
of investigation38 not only in the theory of quantum dissipative
systems24,31,29 but also in a variety of models with directed
diffusion, such as models for the growth of bacterial populations,
diffusion-reaction models of chemical reaction, or models of

spreading of genetic mutations. We believe that the simplicity
of the Blue’s function formalism makes it worth pursuing in
studies of this vast family of problems in biological and chemical
applications.
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