9554 J. Phys. Chem. A998,102,9554-9558
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We discuss a model for transport properties in a defaceptor system connected by a dimerized chain.

The system is assumed to be subject to site-diagonal disorder. The average spectral properties of the system
are discussed by using the random matrix Wegner model (Anderson’s type tight-binding Hamiltonian (TBH))
for the electronic part of the problem. In our analysis we use the “Blue’s function” (functional inverse of the
resolvent) formalism. For a simple one-dimensional tight-binding picture, we show that the diagonal disorder
destroys the energy gap emerging as a Peierls effect in a nonperturbed system without disorder, rederiving
thus the results obtained earlier using different models of site randomness.

I. Introduction with §; being a symmetric site diagonal matrix
Despite their simplicity, one-dimensional systems play a Bois1=p—t “single” bond
. . K . . . 2i,2i—-1 1
crucial role in the understanding of the properties of solids, since (2)
many features of the properties of the electronic states and of Baiza =P+t “double” bond

the related transport properties can be discussed rigorously (see
refs 1 and 2 and references therein). Current developments infepresenting alternating variation between the sites. Such a
molecular electroniéshave brought the attention to the one- Hamiltonian is relevant for polyenes and cofacially stacked
dimensional electronic systems as models of molecular wites. polymers. For a typical example of a conjugated system of
A molecular wire is a quasi-one-dimensional molecule or polyacetylené,the dimerized structure of the chain is character-
ensemble of molecules that can transport charge carries betweeized by thesr band width # = 10 eV and the dimerization
its ends. That means that a molecular wire has to be conjugatecenergy 2 = 4t; ~ 1.4 eV. Within the one-electron approxima-
along its entire length, thus providing a series of overlapping  tion, neglecting the effect of phonons, the above tight-binding
orbitals through which the electron delocalization is effective. Hamiltonian can represent also a molecular WiteThe Hickel-
It should have also a small bandgap so that the energy differencdike models have been used in series of papers devoted to the
between the localized electrons and delocalized ones is smallstudy of the electronic response of molecular witésln the
enough to make the “conduction band” easily accessible. latter, the authors have raised the role of disorder in tight-binding
Quasi-one-dimensional metals and molecular wires distort Wires; that is, they have studied the effect of random site
spontaneousfy? according to the Peierls instability: the spacing energies (Hokelo parameter). Such a static diagonal disorder
between successive atoms along the chain is modulated withrefers to situations when the position and nature of the groups
period 2t/(2ks), where ke is the Fermi wave number. The inthe wire are only known statistically. In fact, in theelectron
tendency toward spontaneous symmetry-breaking is particularly Picture of the Hakel Hamiltonian, changing the side groups
strong in systems with a half-filled conductance band. The affects the energy of the site it has been attached to. For that
distortion leads to a pairing of successive sites along the chain,f€ason, quasi-one-dimensional bridges with disorder can be
or “dimerization”. The process opens an energy gap at the modelg of biological medium (proteins) involved in carrying
Fermi surface, thus lowering the energy of occupied states andthe electron from donor to acceptor.
stabilizing the distortion. The electron density of states and localization length have
In the competition between the lowering of the electronic Peen previously calculated for weakly disordered dimerized
energy and the increase of the elastic energy of the IOoner,tlght-blndlng chains (cf. refs 1014) using various methods.

the modulation of the bond length takes place. Dimerized chains' Particular, it has been showhthat a stochastic Gaussian
can be thus described by a tight-binding Hamiltonian with site disorder destroys the energy gap in the center of the band.
alternating off-diagonal terms In what follows, we report on the effect of diagonal disorder

on the localization properties of a dimerized chain that ac-
N companies the charge transfer. Our method, based on the “free
H. =% |08 + . IB- 1 variables approach”, is consistent with the CPA treatrent,
bridge IZ 1A ; Ayl I @) as it will be briefly discussed in the next section. In section I,
we review the formalism of the functional inverse of Green’s
function, which is used in our approach to evaluate spectral

l}gcgﬂigﬁgi %’:}ii‘\’/irgit?armﬁadt' properties of the system. In sectionsHN an application of
8 Un?versita Heidemerg)_/' Blue’s f_unction is presented; we an_alyze and dist_:uss statistical
' E¢tvos University. properties of the TBH model with disorder, showing the effect
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of noise on the Peierls gap in a dimerized chain. In conclusion, N random Hermitian matrices generated with the Gaussian
we speculate on further applications of the formalism. probability

II. Disordered Chain and Random Matrix Models P(H) z%e—NtrHZ/(ZUZ) 9)

Complex and disordered systems play an important role in a
number of areas in physics, chemistry, and biology. The dual
interplay between disorder and localizafi®and disorder and
chaod®?° has far-reaching consequences on many aspects of
modern sciendd—2> at the macroscopic and microscopic levels. G2 = i(z — V7 — 467 (20)
A neat tool used in investigating Hamiltonians of disordered 20°
systems is the random matrix theory (RMFR2where numer- ) ) _
ous calculational methods have been developed such as orWhich together with the eq 7 lead to Blue's function
thogonal polynomials, replica methods, and others. A powerful
alternative to some of these methods has been the work of BR(Z) = 0224—1 (11)
Voiculescu and Speich#r’using the concept of “free random z

variables”. “Free disorder” allows for exact calculations of h . 8 b hi ith the CPA
various moments of Hamiltonians composed of random and | "€ property in eq ears much in common with the
treatment®17 of the Hamiltonian eq 3 for which thilg part is

deterministic parts. In physical systems, freeness accounts for . L
summing over all “single-site” rescatterings, similar to the mean- 1€ diagonal random matrix with random entriés The CPA
field approach in many-body theory. Instead of using the method require’s

standard language of Green'’s functions, one can choose to use VoS

their functional inverse introduced and named “Blue’s functions” 57[}: 0 (12)

by Zee?® In many ways, the Blue’s function approach is a user- —(V-2)G

friendly method providing a calculational shortcut to a more | , . - .

advanced approach presented in Voiculescu papers. In thewnh_Grgens function fqulIIlng the condition Of €q 4'. By
former two paperd?3°we have used the formalism of Blue’s multiplying by G(z) and adding and substracting 1 in the
function in the calculation of spectral properties of disordered numerator, the above formula re&ds

systems. The machinery is based on the concept of additivity

of Blue’s functions for both Hermitian random ensemBtesd G@) = 1= +12 VD: GR(G_1 + ) (13)

non-Hermitian random ensembl@8! with arbitrary measures.

standard calculatio”sgive

The formalism can be translated to describe spectral properties

of a Hamiltonian of the form By taking the functional inverse (Blue’s function) of the random
part of G(2) in eq 13 and the deterministic part 6{z) in eq 4
H=HP + HR (3) one obtains

where HP is a deterministic andHR a random part of the
operator. By assuming thet® andHR are free with respect to
the average over the disorder, the diagonal part of the one-
particle Green function associated with the total Hamiltonian After the substitutiorz = B(G(2)), the sum ofBr andBp can
H satisfies the equatidhl7.27:28.32

Be(G) = 5 +3

D Bp(G)=z—-Z% (14)
G(e) = Gz~ 2(G(2)] 4)

where the argument &P is z — = with X being nothing but
the self energy determined by

be reexpressed in terms of eq 8, bringing the argument about
the CPA characté?!7 of the method.

R_ 1 5) [ll. Spectral Density and Conductance
— Z(GR) A molecular wire can be understood as a connecting unit that
is able to transfer electrons between two componghts.
and Important applications of molecular wires range from molecular
" 1 electronicg3to bridge-mediated electron transfe0.3436 jn
G = N trhﬂ (6) biological systems, where the transfer of electron proceeds from

donor to acceptor through a bridge connecting them. The ability
to transfer charges between terminal points of the wire is
measured in terms of conductance, which at low temperature
(and in the dc limitw — 0) can be expressed in terms of the
spectral function via the KubeGreenwood relatight?

The same result has been rederived by?Zeeo, through
his diagrammatic analysis, introduced the “Blue’s function” that
is just the functional inverse of the resolvent

BIG@)] =z (7) e
e
and satisfies the additivity law Or—o(®) = COHSt—ﬂVB vi(e=Ep) (15)
1
B”"(2) =B°(9 + BY(9) - > (8) where Eg stands for the Fermi energg,is a unit chargeVs
represents the volume of the first Brillouin zone, ar(d) is
Both egs 4 and 8 coincide if one identifiB¢z) = =(z) + z° L. the density of electronic states in the wire. By changing to a

When the averaging in eq 6 is done over the ensembié¢ »f complex variable, the density of eigenvalues can be conveniently
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defined in terms of the trace of the resolvent of the wire (bridge) 1.5
Hamiltonian oy T
1 1 oS
=15 -~ -~
Gle) = tr Biﬂ (16) o
N ~ Hyrigge 1t 6=2.5
The density of states fdtlyriage iS then given by %
B . .
1 1 . | R TN S =1’A=0'5
v(e) = N [B(e = Hyiggd = — p ImG(e +i4) (17) 05 e BRI \B
in the limit of A — 0 and follows from the discontinuities of
the resolvent (eq 16) along tkeaxis. In the Peierls theory the 0 . . L ;
one-domensional bridge Hamiltonian is of the form 0 1 2 3 4
€
0 B+ kit Figure 1. Spectral density of the Peierls bridge with= 1, A = 0.5,
H = B+ t, 0 B- t (18) and varying noise strengthisfor nonnegative energies. Note that by
b p— t, 0 B+ t eq 21, the spectral density in this case is symmetric in eneegies
etc.
4 r —
with alternating coupling strengths amgd= A/2. The deter- i
ministic resolvent of such a moddl x N Hamiltonian, in the 35
limit of large N, is®
3t
GP (e) = e (19) s |
Vié - ag)(a? - & 25
Blue's function, the function inverse of the resolvent, may be {
found easily, 2
(B2())? = J[46% + A%+ 1 & LS e s )

x/(4[32 + A2+ 1/62)2 _ 1662A2] (20) Figure 2. Critical strengtho- in rescaled unitsX — A/f3, o — alp).

As it stands, the bridge TBH Hamiltonian, eq 18, can be A parameters. o o

generalized, as in the case of the Anderson model, to include The “deterministic” spectrum is divergent close to the
disorder of the bridge chain. In what follows, we will adopt €ndpoints of the bands-€3, —A) and @, 26), reproducing
the model of the site diagonal disorder that is equivalent to the the resuits of former analyst$.1% For an increasing value of
ones studied by Wegr@rand Neu and Speichéf2? The idea the noise intensity, the distributiorv(e) flattens ar_ld the Peierls

of Wegner was to generalize the Anderson model by putting 9ap disappears. Eventually, the spectral density changes from
electronic states at each site of ttielimensional lattice and  the four-modal function with two peaks located at the ends of
describing the disorder by Gaussian random matrices in thethe positive (negative) support to the unimodal distribution with
electronic states. Fam = 1 Wegner's model reduces to the @ broad hump around the center of the support. Similar
usual unsolvable Anderson model and becomes exactly solvableconclusions have been drawn in ref 10 using, however, a
for n — «. Adding a Gaussian noise to the (deterministic) different method of calculating averages over the randomized
bridge, with Blue’s functiorBR(¢) = o% + 1/e yields Blue’s site energies. _ S
function of the deterministic plus random system given by eq _ The change from the four-modal to unimodal distribution of

8. By inverting the resulting expression, one finds a sixth-order €igenenergies is characterized by a vanishing second derivative
equation to the resolvent of the full system, of the resolvent around the center of the barwe,0. Expanding

eq 21 around = 0 up to the second order, the critical noise

1 strengtho, is given by the third-order equatiopp & 1)

(e — °G)* — (e — 026)2(4ﬁ2 + A%+ —2) + 482 A*=0
© (1) 40, — [B(A% - 47 + 25607 (0, —

At ¢ = 0 this can be reduced to a second-order equation 192A% (A? — 4Y'0," — 36A% (A* — 4)' =0 (23)
2 2 A2\2 4 The general solution may be expressed analytically, however
Ge=0)= a0 + A \/(24’84 A) + 40 (22) lengthy. For a small gap < 0.1), we find
o
‘a12(1+ 2322 24
For small noiseg, the resolvent is real, reaching zerovat = Ox ¥ 2 (24)

2BA, and foro > o the resolvent is imaginary, indicating a

nonvanishing spectral density. Thus, for a critical value of the with ¢,*= 12 for the gapless case. For the demonstrated choice
noise intensityo. we observe the disappearance of the energy A = 0.5 we foundo, = 2.38, and in the limiting casa — 2,

gap induced by the Peierls instabilityA2shrinks to zero. o, — 4 (see Figure 2). From the above considerations, we can
Indeed, this is shown in Figure 1 for a specific choicg@nd deduce that the dc conductivity at zero temperature, which is
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given by the square of the spectral function (cf. eq 15) depends
essentially on the strength of the noise. Above the critical value
of the noise intensityg.? = 28A, the conductivity becomes
nonvanishing everywhere inside the band.

IV. Localization Constant

Transport properties of the model system can be also
described in terms of the localization constath®:*® For the
inverse localization length = 1/, the localization constant is
defined as

y=—lim =1 |G,y (25)
N—o N 1N
On the other hand(N,e) = |Gin(e)|? i.e., the square of the
matrix element ofG(¢) between the states that correspond to
the first and thé\th sites of the connector gives the transmission

probability for a particle to be transferred from site 1 to $ite
The matrix elementG;n of the full (deterministic plus
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Figure 3. Localization constant as the function of the energy yith
=1, A = 0.5, and varying noise strengths

with infinite localization length. However, even the smallest
noise yields a nonzero value of at that point. After

random) system once again may be related to the same elemendisappearance of the Peierls gap, for noise intensities bigger

of the deterministic systeth2730

Gy(e) = Gy (¢ — Z[G(e)]) (26)

with the self energy of the random interacticX{G] = ¢°G.
The deterministic matrix element is easy to evaluate:

o - —(B + ARVZL (B — A2)V?

N detH, N even

(ﬁz _ A2/4)(N—l)/2

detH, N odd

(27)

The determinant def] = detHy, can be evaluated knowing the
resolvent (eq 19) by integration, since
G(e) = 0.F(e) (28)

whereZ = [det)Ccan be interpreted as a partition function
1
F(e) = N log [det()

with F(e) being a free energy analogtfe.Direct integration
yields

det) =

2_ A2 2 22\N
Ve — A2+ e 43 (29)
2
with the asymptotic detf — €N for large e. Dropping the
subleading Q(1/N)) terms, the “deterministic” localization
constant is

\/62—4ﬂ2+\/62—A2

in the case of the bridge alone. For the full system (with noise
included) we make use of eq 26:

y(€) = yple — 0°G(e)]

In the A — 0 limit these formulas reduce to the ones discusse
in the previous work®

There is an interesting numerical observation: for small gaps
the most stable states are the ones araundL (in units of5)

7ol€) = log (30)

(31)
d

than (8A)Y2 the most stable states have energies around the
pointe = 0.

V. Model of a Molecular Wire

So far, in our discussion we have omitted the effect of
terminal components (electrodes; donor and acceptor units) that
are connected by a molecular wire. A more general description
would require considering a system composed of two nonin-
teracting reservoirs of electronic states to which the molecular
chain is attached. The interaction between the electrodes and
the wire can be incorporated into the effective transfer matrix
element through Green’s function of the total “wire plus
reservoirs” Hamiltonian. Within the Newr#Anderson chemi-
sorption model;® assuming half-filling, and for the transfer
between identical electrodes, the effect of reservoirs can be
lumped into the site energies..., ex through the chemisorption
coupling. Formally, it leads to substitutibn

€.~ e TiA

ey ey T IAY (32)
whereA stands for the chemisorption coupling.

In the deterministic case and for a finite homogeneous bridge
of N units theG;  element reads

N—-1

(_1)N_l ﬁi,i+l

dy — 20y_,Z; + dy_,=,5,

Gin (33)

wheredy is a determinant of the tridiagonBl x N matrix, dy

= det—Hp), andZ; = X\ are self energy corrections both set
up to iA. Note that in the largeN limit, this formula is
essentially the same as for the case of a pure molecular wire
with no electrodes attached. The only difference is a multipli-
cative factor (1+ iA)~2. Given the effective Hamiltonian, the
small voltage, low-temperature conductance of the wife is

9= i—i A%|Gy(0))° (34)
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and can be analyzed within the formalism of section IV. Again, spreading of genetic mutations. We believe that the simplicity
using eqs 4 and 26 or eq 8 would be equivalent to the coherentof the Blue’s function formalism makes it worth pursuing in
potential approximation (CPA limi%1” The “free random studies of this vast family of problems in biological and chemical
variables” approach is also relevant for non-Gaussian statistics.applications.

That renders the Blue’s function formalism as a beneficial

method because of its appealing simplicity. Acknowledgment. This project has been supported by the

Deutsche Forschungsgemeinschaft, Bonn, the Funds der Che-
V1. Conclusions mischen Industrie, Frankfurt, Polish Ministry of Education KBN,

_ L . L Grant 2PO3B 00814, and by Hungary, Grant FKFP126/97.
The main objective of this contribution was to present an
efficient tool to study spectral properties of disordered systems. References and Notes
The method has been previously introduced in a series of (1) ramer, B.; Mckinnon, ARep. Prog. Phys1993 56, 1469.
paper$>2831 and succesfully applied in various models of (2) Aviram, A.; Ratner, M. AChem. Phys. Lettl974 29, 277.
dissipatior® and transport in disordered medfaAs mentioned (3) Ward, M. D.Chem. Soc. Re 1995 24, 121. o _
above, the transport properties of the system are influenced bVCanglli)ring;?a?é;é M.Models of disorder Cambridge University Press:
the localization properties of the electronic states. The model ~ (5) peierls, R. EQuantum Theory of Solid€larendon: Oxford, 1955.
studied in the paper refers to the situation when the bridge (or 209&(46) Su, W. P.; Schrieffer, J. R.; Heeger, A.Rhys. Re. 1980 B22,
a wire) is long enough to be congdered |nf|n|te.. We haye (7) Kemp, M.: Roitberg, A.: Mujica, V.: Wanta, T.: Ratner, M. A.
analyzed an array of elements with the alt_ernatmg coupling prys.'chem1996 100, 8349.
between the bridging orbitals along the chain. Owing to the (8) Kemp, M.; Mujica, V.; Ratner, M. AJ. Chem. Phys1994 101,
Peierls effeck a one-dimensional lattice with an equal overlap- 517?9) bande. V. S Onuchic. J. Rhvs. Re. Lett. 1997 78. 146
ping |ntegral' betyveep the nearest-ne|ghbor!ng sites stabilizes (10) Mertsching, JPhys. Status S'o)llid'ngg'z B174 129.
through a dimerization process that effectively leads to an  (11) wolf, M.; Fesser, KAnn. Phys1992 1, 288.
alternate bond length structure. A perfectly dimerized chain  (12) Fischbeck, H. J.; Hayn, Rehys. Status Solidi199Q B158, 565.
can be described by a‘ldkel-type Hamiltonian (eq 1). In a Refl?gg'?h'é'ggta%‘g@” Baeriswyl, D.; Bishop, A. R.; Lomdahl, PPhys.
dimerized chain a gap band of widtiA2s formed. In the paper, (14) Vanderbilt, D.; Mele, E. Phys. Re. 198Q B22, 3939.
site diagonal disorder is assumed to be in the form of a random (15) Janik, R. A.; Nowak, M. A.; Papp, G.; ZahedNucl. Phys1997,
i i i i i idaing B501 603.

matrix model, resulting in placing at each site of the bridging (16) Janik, R.; Nowak, M. A.; Papp, G.; ZahedActa Phys. Pol1997,
chain a random matrix with a semicircular distribution of gog 5949
energies (Wegner modél. That would correspond to a (17) Neu, P.; Speicher, R. Stat. Phys1995 80, 1279.
situation where the bridge energies arelectron functions. (18) Anderson, P. WPhys. Re. 1958 109, 1492.

. . ; : ; ; (19) Bohigas, O.; Giannoni, MLecture Notes in PhysicsSpringer
The site diagonal disorder imposed on the TBH Hamiltonian Verlag: Berlin, 1984: Vol. 209,

can reduce, and eventually destroy, the Peierls gap, the effect (20) Gutzwiller, M. C.Chaos in Classical and Quantum Mechanics
of which has been reported in literature previously (cf. ref 10 Springer Verlag: Berlin, 1990.

i ; (21) Mehta, M. L. Random MatricesAcademic Press: New York, 1991.
and references therein). The prese.nce.Of nOISG. extends and (22) Porter, C. EStatistical Theories of Spectra: Fluctuationsca-
flattens the spectrum of the TBH Hamiltonian, leading to a one- gemic press: New York, 1965.

interval energy support for values of noise intensity bigger than  (23) Mahaux, C.; Weidentiler, H. A. Shell Model Approach to Nuclear
the criticalo. = (28A)Y2. If noise intensities exceed that value, Reaz‘i{'ogs’\'ﬁfthF"!C:'lar!?i AFm'slt_err?am, 19’\“59-5 her DL S _
dc conductivity becomes finite everywhere inside the band. For Ph§/s.199gasgé g eV, P enmann, . Saner, B Sommers, £
€, the energy splitting between the Fermi level and the site  (25) Mirlin, A. D.; Miiller-Groeling, A.; Zimbauer, M. RAnn. Phys.
energies sampled from the center of the TBH band, the noise1994 236 325.
increases the inverse localization lengtiand leads to a fast (26) Voiculescu, D. Vinvent. Math.1991, 104, 201.
. ) P ) (27) Speicher, RMath. Ann.1994 198 611.
decay of the eIeptron_m couplin@z n(e)|? with the dlstange (28) Zee, A.Nucl. Phys.1996 B474 726.
measured in chain units. That would reduce the electronic part (29) Gudowska-Nowak, E.; Papp, G.; BrickmannCem. Phys1997,
S ) in 220, 125.
of the kinetic rate fo_r charge_ trans_fer proces§es along the chain. (30) Gudowska-Nowak, E.: Papp, G.: BrickmanrCBem. Phys1098
The random matrix techniques in the Blue’s function formal- 5357577
ism can be also applied to non-Hermitian Hamiltonigms:31 (31) Janik, R. A.; Nowak, M. A.; Papp, G.; Wambach, J.; Zahed, I.
This approximation is then identi¢élwith the conventional Ph{;é)Rg' 1?97,LE5A5T?]100- Math, Phys, (USSEB72 10, 67
H H H H astur, L. A.lheor. Matnh. ysS. ) .
CPA approximation used .Ir.] the thepry Qf disordered SySbems' (33) Michel, B.; Travaglini, G.; Rohrer, H.; Joachim, C.; Amrein, M.
The models of non-Hermitian Hamiltonians offer a new field z. phys. B1989 76, 99.
of investigatiori® not only in the theory of quantum dissipative (34) Evenson, J. W.; Karplus, M. Chem. Phys1994 96, 5272.

,31,29 i ; ; ; (35) Skourtis, S. S.; Onuchic, J. I€hem. Phys. Lettl993 209, 171.
system&* but also in a variety of models with directed (36) McConnell. H. M.J. Chem. Phys1961 35, 508.

diffusion, such as models for the growth of bacterial populations,  (37) wegner, FPhys. Re. B. 1979 19, 783.
diffusion—reaction models of chemical reaction, or models of (38) Hatano, N.; Nelson, D. RPhys. Re. Lett. 1997, 77, 570.



